
Formworks XD
Lua Scripting

Guide

Version 1.0 Page 2

Contents
Introduction to Formworks Scripting 10

Formworks scripting introduction 10

Common uses of scripting 10

Validation 10

Calculated fields 10

Date Arithmetic 10

Lua 10

Limitations of Lua on iOS Devices 11

Testing and debugging your Lua scripts 11

The Formworks Scripting Object Model 12

Similarities to other development environments 12

Elements, Events, Properties and Methods 12

Lua Guidelines – The Basics 14

Case sensitivity 14

Comment Operator (--) 14

Concatenation Operator (..) 14

Equals (=) and (==) 14

Terminating instructions (;) 14

Assigning and Reading values to Elements 15

User Defined Properties 15

Code structures 17

“and” and “or” comparison 17

Less than and Greater than comparisons 17

Negation (~=) 18

Lua – Advanced use 19

Version 1.0 Page 3

String Functions 19

Converting between Strings and Numbers 19

Validating a range or individual characters in a Field 19

Replacing characters in a field 20

Character substitution within element names 20

Looping structures in Lua 21

Handling Dates 22

Lua – Global Functions 23

Introduction 23

Returning a value 23

Formworks Date Validation Properties and Functions 24

Date Properties 24

Date Functions 24

Time Properties 25

Time Functions 25

Setting Date Properties 25

Reading Date Properties 25

Using Date Functions 26

Common date formats 26

Formworks Time Validation Properties 26

Device User’s Name, Email Address and Geo-Location 27

Device User’s Name 27

Device User’s Email Address 27

Geo-Location Data 27

Creating a Unique Reference 28

Renaming PDF Export Files 28

Formworks Alert Boxes, Notification Lists 29

Interactive alert Boxes 29

Notification Lists 29

Version 1.0 Page 4

Scripting Specific Elements 30

Help Element 30

Single Selection (List Box) 30

Table Element 31

Filter Table Function 31

General Table Functions 31

Accessing Table Cells within Loops 32

Setting Row Visibility within Loops 32

Methods of Accessing Individual Table Cells 32

Forms 33

Automatically opening a new blank form 33

Automatically closing and deleting a form 33

Dynamically populating a Single Selection Dropdown List box 35

Dynamically populating a Single Selection List based on values in another 35

Elements 37

Containers 37

Fields 37

Other Elements 37

Events 38

Properties 39

Methods 39

The Script Template window 40

Introduction 40

OnValidate Event - Checking for valid input 40

Using the “and” keyword and Alias names – validating multiple values 40

Checking for empty elements/fields 42

Device Submit Window 42

OnValueChange event 43

Intellisense 44

Version 1.0 Page 5

Calculated Fields 45

Introduction 45

Global Variables 46

Introduction 46

Custom Properties 47

Introduction 47

Features of Custom properties 47

Comparison chart 47

Date and Time Functions 48

Calculating the days between two dates 48

Calculating the difference in minutes between two times 50

Operating System Time Function 51

Table Elements Scripting 51

Referencing Table cells in script 52

Looping through Table cells 52

Databases 53

Introduction 53

Quotations and calculation 53

Workflow and Project management 53

Maintaining your databases 54

Creating and Updating databases 54

Making a CSV data file 54

Uploading the CSV data file 54

Using databases on your form templates 55

Populating a basic list box 55

Populating a list box with different display and return values 56

The SQLite Select Statement 58

Querying using Wild Cards 58

Querying Multiple Columns 58

Version 1.0 Page 6

Combining And, Or and Where statements 59

Joining Databases 60

Types of Joins 60

Operators 60

Populating a List box from a Database 61

Populating cascading list boxes 63

Local Databases on the device 63

Post Code Lookup 64

Introduction 64

http.checkConnected(), http.getStringFromUrl(url) and
http.getTableFromJSON(url) 64

Address fields available 66

Other Network Functions 66

Debugging 68

Introduction 68

Properties - General 69

valid Type: Boolean 69

message Type: String 69

enabled Type: Boolean 69

visible Type: Boolean 69

title Type: String 70

isIphone() Type: Boolean 70

Events - General 71

OnBlur 71

OnEnable 71

OnDisable 71

OnFocus 71

OnHide 71

OnShow 71

OnTap – button element specific 71

Version 1.0 Page 7

OnValidate 71

OnValueChange 72

Form Specific Events – in order of occurrence 73

OnStart 73

OnOpen 73

OnSave 73

OnClose 73

OnSubmitAndConfirm 73

Globals 73

Form Specific Methods and Properties 74

Audio Functions 74

Miscellaneous Functions 74

form.changePage("aliasName / pagename") 74

form.openURL(strVar) 74

form.templateId 75

Appendix I 75

Elements - their properties, events and methods 75

Buttons 75

Properties 75

Events 75

Methods 75

Checkboxes 75

Properties 75

Events 75

Methods 76

Date elements 77

Properties 77

Events 77

Methods 77

Version 1.0 Page 8

Functions 77

Forms 78

Properties 78

Events – in order of occurrence. 78

Methods - General 78

Methods - Audio 78

Related functions 78

Groups and Sections 80

Properties 80

Events 80

Methods 80

Images 81

Properties 81

Events 81

Methods 81

Labels 81

Properties 81

Events 81

Line 81

Properties 81

Events 81

Multi-Select 82

Properties 82

Events 82

Methods 82

Pages 83

Properties 83

Events 83

Methods 83

Version 1.0 Page 9

Photos, Signatures and Sketches 84

Properties 84

Events 84

Methods 84

Single Selects 85

Properties 85

Events 85

Methods 85

Filter Table Function 86

General Table Functions 86

Text Boxes and Paragraph elements 87

Properties 87

Events 87

Methods 87

Time elements 88

Properties 88

Events 88

Methods 88

Appendix IV 89

Character classes 89

Appendix V 90

Post Code Anywhere Address Fields 90

Version 1.0 Page 10

Introduction to Formworks Scripting

Formworks scripting introduction
Scripting provides Form Authors with the ability to extend the functionality of their
forms. Anyone familiar with scripting languages will be able to create powerful
validation scripts and trigger actions driven by data entered into a form.

Formworks provides an object model that will be familiar to developers who have used
Visual Studio or similar object oriented programming environments.

Common uses of scripting
There are many reasons for using scripting. Detailed below are some of the more
common uses.

Validation
Script can be used to define specific fields as being mandatory/required and specify
error messages to be displayed to the device user if they fail to complete these fields.
Validation can be as simple as enforcing a single key reference field, or much more
complex. You can create conditional logic that stipulates that if one field has been
completed, another must also be. Or if a certain value has been entered in one field,
another field must also be completed. An example would be a salutation field,
containing Mr, Mrs, Ms and Other. If ‘Other’ is selected, a text box could be enabled
that the device user must complete.

You could move the ‘focus’ of input to a specific field, or page, based on what options
a user selects from say, a drop down box. If the user selects ‘Private residence’, the
focus could be moved to page 2, with details of private dwelling types. If they select
‘Commercial’, the focus could shift to page 3, containing commercial properties.

Calculated fields
Using script you can sum the values of text boxes, placing the total in another text box.
These calculations could range from adding a few fields together and calculating VAT,
to complex formulas. Values can be allocated to non-numeric fields, like checkboxes,
and totals stored in variables that whilst invisible to the device user, would appear in
the output. An example usage would be health and safety scores, based on checkboxes
that represent risk factors. Calculations can be performed both dynamically, as data is
entered, and on demand, for example on the click of a button.

Date Arithmetic
Formulas can be applied to dates and times – both those entered by the user in date
and time elements, and the system date and time. For example, you could compare a
date entered by a user to the system date, to check if the date was within an acceptable
range, or subtract one date from another. When checking if the date entered by the
user is within a specific range, Formworks has its own unique date validation functions
that are covered later in this guide.

Lua
Scripts are written in a common scripting language called Lua. The version of Lua
implemented within Formworks is 5.1.4. For more information on Lua, visit the Lua

Version 1.0 Page 11

website at http://www.lua.org/. Full documentation on the Lua language can be
found here: http://www.lua.org/manual/5.2/.

Limitations of Lua on iOS Devices
Some Lua functions are not available on iOS. These are the “file:” functions (e.g.
file:close, file:flush etc.) and the “io” functions (e.g. io.close, io.flush etc.).

Testing and debugging your Lua scripts
Whilst the Formworks application includes simple debugging facilities, you may wish
to test more complex scripts prior to employing them within a template, or simply
experiment with code. You can do this very simply at the Lua demo web site:

http://www.lua.org/cgi-bin/demo

Using this site, you can enter Lua code in the first panel, and select the Run option to
confirm that the code runs successfully. If you wish to see the value returned by your
code, use the “return” instruction, as in the screen capture.

http://www.lua.org/
http://www.lua.org/manual/5.2/
http://www.lua.org/cgi-bin/demo

Version 1.0 Page 12

The Formworks Scripting Object Model

Similarities to other development environments
Scripting in Formworks employs a common object model, similar to development
environments such as Visual Studio. The principles of developing script using
Formworks follows many of the basics of object oriented programming. This involves
using objects referred to in Formworks as elements. We set element properties using
method calls when an event occurs.

Elements, Events, Properties and Methods
The objects such as a form’s pages, text boxes and radio buttons that you drag onto
the form in the Form Designer window are called Elements.

Events are actions that can happen to an element, such as when a user touches a text
box (OnFocus), or moves from an element that has the focus to a different element,
(OnBlur) or when the value within an element is changed, (OnValueChange).

Most of these elements possess properties, such as Message, Value and Valid. Usually
the purpose of writing script is to change the value of an element’s properties.

You can read and set properties using method calls. For example, the method call
textbox.valid = false would set the Valid property of a text box element named textbox
to false.

Taking a real world example to
demonstrate the use of properties,
methods and events, you might wish to
make a text box element mandatory for
input. To do this create a script that
uses a method to set the element’s
Valid property to false if no input has
been entered. When the device user
tries to submit the form, the OnValidate
Event for each element is run in the
order that they appear on the Form
Designer, checking the valid property
for every element. If any valid properties have been set to false, the form will not
submit. Note that you can only set the valid and message properties of an element
from within the elements OnValidate event. You can refine this example by using
another method to set the element’s message property to display a meaningful
message to the user.

The element, Page1.Section1.Name can be considered a basic object. When entering
code directly against the element’s template, the keyword ‘this’ represents the
element’s entire name. The term ‘value’ represents the element’s Value property. The
Method call, “this.valid = false” sets the element’s Valid property to false, whilst the
method call, “this.message = “Please enter your name”, is a meaningful message to
display to the device user if they fail to complete the field before they try to submit the
form. We will now cover elements, properties, methods and events in more detail.

Version 1.0 Page 13

Version 1.0 Page 14

Lua Guidelines – The Basics

Case sensitivity
All Lua instructions are case sensitive. You can create and save Lua scripts in the Form
Designer, using the Scripting window. It is possible to save incorrect instructions, such
as using capital letters on Lua keywords or missing the “end” instruction on an “if, then,
end” code structure, but incorrect instructions will either be ignored, or could cause a
fatal error on the device when the user attempts to access the form.

All element names and properties are considered case sensitive when used in script,
and must be represented in script exactly as they are in the Form Designer.

Comment Operator (--)
Use two hyphen characters to create a comment in Lua (--). You can comment an entire
line, or place a comment at the end of a line of script. See Example 1.

Variable name restrictions
In Lua, variables must not contain the hyphen character (-). This same restriction
applies to element names and aliases.

Concatenation Operator (..)
To concatenate string values, use two full stops (..). For example:

local var = “Test” .. “ Case”; The variable var now contains “Test Case”.

To place a carriage return or line feed between variables in script, you would use \r.
For example;

local var = “Test \r” .. “Case”;

However, if you wish to place a carriage return or line feed between characters in a
paragraph field, when prefilling a form, you would use the \n character.

Equals (=) and (==)
When you are assigning a value to a variable or an element’s property, you use a single
equals character, for example:

stringVariable = “Test”;

When you are testing that one value equals another, you use two equals characters,
for example:

if variable1 == variable2 then… etc.

Terminating instructions (;)
Each instruction must be terminated with the semi-colon character (;).

Version 1.0 Page 15

Assigning and Reading values to Elements
The most common actions in scripting are allocating values to elements, reading values
and setting element properties. For example;

● textBox.value = "Test"; -- setting a value property

● variable = textBox.value; -- reading an element’s value

● textBox.visible = true/false; -- setting an element’s property value.

Most elements have a value property, though not all. For example, neither line nor label
elements can contain a ‘value’.

You read the value of an element, say a text box, by accessing its value property:

Variable = textBox.value.

However, there are a number of different ways to refer to an element within script:

● Fully Qualified Name:
o Variable = Page1.Section1.Group1.textBox.value;

● Alias property:
o Variable = getField("AliasName").value;

● Dataname:
o Variable = getField("DataName").value;

In addition to the above, as a two-step process, you can create an object reference to
an element, and then refer to the reference object’s value property:

local tempField = getField("Page1.Section1.Values/Alias/Dataname");

TargetField.value = tempField.value;

User Defined Properties
In addition to the standard element properties, that are pre-defined within the
application, you can create your own element properties, allocate a value to them,
and read these values to use within your script. There are a limitless number of uses
for User Defined Properties, but obvious examples are workflow management and
simply to hold multiple readable values against an element, for example:

Creating a new User Defined Property:

textBoxWorkflow.Notification = "Initial Client Contact";

textBoxReference.ClientRef = 12345;

Reading the value of a User Defined Property:

textBoxOutput.value = textBoxWorkflow.Notification;

Version 1.0 Page 16

Version 1.0 Page 17

Code structures
Basic structures such as, “if, then, else, elseif and end” are supported. These must
include both the
“then” and “end”
instructions.

if first check then

 first instruction;

elseif second check then

 second instruction;

else

 final instruction;

end

“and” and “or” comparison
You can also compare values using the ‘and’ and ‘or’ keywords, as in the above example.

Less than and Greater than comparisons
To ensure that a numeric value
is within a specified range, use
the Less than, Greater than and
Equals operators. Digits should
not be enclosed in quotes.

If the value 1 is entered in the
ContractPeriodYears text element, a warning message will be displayed in the Form
Submission window, when the device user tries to
submit the form.

If the ContractPeriodYears text element is left
empty, the message “Contract Period Years must
be a number” will be displayed.

Version 1.0 Page 18

Negation (~=)
The characters ~= can be used to test if a value does not equal another value. See
figure below:

Version 1.0 Page 19

Lua – Advanced use

String Functions

Converting between Strings and Numbers
Lua will automatically convert strings to their numeric value when required, or treat
them as strings when you use string functions, such as the concatenate operator.

Concatenating a literal string to a numeric value using the concatenate instruction:

Var1 = "35";

Var1 = Var1 .. 1;

Following the concatenation instruction “..” the variable Var1 now contains the string
value “351”

You can perform arithmetic functions on string variables that contain numbers without
prior conversion:

Var1 = Var1 + 1;

The variable Var1 now contains 352.

Usually the automatic conversion between numbers and strings is sufficient, but there
are some instances as you will see in the following examples, where you may need to
issue explicit conversion instructions. To check if a value can be used as a number, use
the tonumber(value) function.

Finding the length of an element’s value
You can determine the length of a field’s value, for example, to confirm that the user
has entered the correct number of characters, using the string.len() function. The
format for this function is:

varLen = string.len(stringVariable);

Validating a range or
individual characters in a
Field
Lua does not support ‘real
expressions’. If you need
to know that part of a field
is alpha and part is
numeric, you can use the
string.find() function. For
clarity, I have also used
the string.sub() function
to confirm that the Reference field is seven characters long and contains three alpha
characters, followed by four digits.

Version 1.0 Page 20

In this example, assume the Reference field contains the value “ABC1234”. The two
components, “ABC” and “1234” have first been stored in two local variables using the
string.sub() function. Indexing in Lua is based on the first character equalling 1, unlike
many languages that assume the first character is in the 0 position.

The first line instructs Lua to, “read the characters in the Reference field, from positions
1 to 3 and store them in the local alphaPart variable. The second line of the function
stores the characters from positions 4 to 7 in the digitalPart variable.

The string.find() function returns two values – the first occurrence of a string, and the
last. The search string could be a literal value, such as “Ref”, or as in this instance, any
alpha characters, both upper and lower case. This is performed using the “%a+” section
of the function. “%a” is a character class that indicates all lower case characters, and
the “+” character indicates that we are searching for more than one character.
Appendix IV at the end of this guide contains all the supported character classes. Using
these classes you can search for either upper or lower case characters, digits, or a range
of combinations and other characters.

To confirm that the digital part of the Reference field is correct, you can simply try to
convert it to a number, and see if this fails. In the example, using:

elseif not tonumber(digitalPart)

Replacing characters in a field

string.gsub(elementName.value, "original string ", "replacement string")

Character substitution within element names
There are three ways to refer to an element within script:

Its fully qualified name, for example:

Page2.Item1.Q.value = anotherElement.value;

By an alias allocated to the element, in addition to its name, i.e.,

Q1.value = anotherElement.value;

Or by replacing characters within the element name with the values of variables. In
this example, counter = 1, therefore the result of this substitution is the same as
example 1, Page2.Item1.Q.value.

local counter = 1;

Page2["Item" .. counter]["Q"].value = anotherElement.value;

You must use fully qualified names and enclose each part of the element naming path
in square braces. Use standard Lua string concatenation to place the value of the
variable within the ‘string’ of the element name that you are referring to.

Version 1.0 Page 21

Looping structures in Lua
The use of looping structures follows on logically from the previous section, Character
Substitution within Element Names. By substituting parts of element names with
variables, and placing them within a looping structure, it is possible to perform many
actions with very few lines of code.

The basic structure of a loop in for Lua is:

for index = startNumber, endNumber, stepsIncrement do

 actions;

end

In the next example, the character i will first contain the number 1, then for every loop
iteration, it will increment by 1, until it reaches 10. Then the loop will terminate. The
steps parameter is optional, and can be positive (1,2,3 etc) or negative (-2 etc).

Here we are iterating through the actions inside the loop 10 times. The character i will
always contain the number of the iteration. Then we use simple string concatenation,
so that we refer to 10 different text box elements, all named Quantity, but in ten
different sections. The sections are named Item1, Item2, Item3 etc. In the example,
when an item with an empty value is found, the variable “counter” will be set to the
value in i, and the break instruction will cause the loop to terminate. The code will
continue execution from the first instruction outside of the for/end loop.

for i=1,10 do

 if Page1["Item" .. i]["Quantity"].value == "" then

 counter = i;

 break;

 end

end

The alternative to the above code, would be something like:

if Page1.Item1.Quantity.value == "" then

 some action

end

if Page1.item2.Quantity.value== "" then

 some action

end

if Page1.item3.Quantity.value== "" then

 some action

end

etc.. Repeated 10 times.

Version 1.0 Page 22

Handling Dates
The Lua today() function returns a string of today’s date. For example:

stringVariable = today(); -- stringVariable contains “14/01/2013”, or to place today’s date into a date

element:

elementName.value = today();

To place the current system time into a time element, use:

elementName.value = os.date("%H:%M");

A full list of possible os.date return values is included below:

Alternatively, the os.time() function returns the current Operating System date as a
number of seconds. Passing parameters to the os.time() function, returns a number of
seconds representing the date passed to it. For example:

Start = os.time{year=YearValue, month=MonthValue, day=DayValue, hour=0};

Using the os.time() function, either with or without parameters, allows you to perform
date arithmetic against the current date, or in fact any two dates. This is useful when
you want to ensure that one date is before another. For example, the following code
finds the seconds value for today’s date and the seconds value for the Date of Birth
date field, then compares them. If the Date of Birth date is greater than today,
validation is set to false.

todayNumber = os.time{year=string.sub(today(),7,10), month=string.sub(today(),4,5),

day=string.sub(today(),1,2)};

dobNumber = os.time{year=string.sub(this.value,1,4), month=string.sub(this.value,6,7),

day=string.sub(this.value,9,10)};

if dobNumber == nil then

 this.valid = false;

 this.message = "Invalid Date of Birth";

elseif dobNumber >= todayNumber then

 this.valid = false;

 this.message = "Date of Birth must be in past";

end

This is only an example of Lua date arithmetic. Formworks has its own functions
which handle the above scenario much simpler. For example, to ensure that the value
of a date of birth field is in the past, place the following script in the fields OnValidate
event:

this.miniumumDate = "today";

Version 1.0 Page 23

The next section deals with the built in date functions included with the latest version
of Formworks.

For further information about handling dates and times in Lua, refer to the Date and
Time Functions chapter of this guide.

Lua – Global Functions

Introduction
Lua and Formworks support Global
Functions. These can be called from any
place in a template and can either perform
simple actions that require no parameters,
or quite complex actions that require one or
more parameters being passed to the function.

The function should be placed in the template’s OnOpen event. But Global Functions
do not ‘run’ when this event runs, only when they are specifically called. A simple
example of a Lua function would be to hide
a template page. The script has been placed
in the templates OnOpen event and can be
called from anywhere, though in the
example, a button is used.

Even though no parameters are being passed to the function, the braces () are still
required after the function name and when it is called.

Returning a value
You can both pass a value to a function and return a value from a function. In this
example we are checking if the string value of the ‘current’ text box is 4 characters
long. On line 2, we are calling a Global Function in the templates OnOpen event. The
function validString returns
true if the string is 4
characters long. Any other
length returns false.

You don’t need to return a value and instead, as in the first example, simply issue a
‘return’ statement.

Version 1.0 Page 24

Formworks Date Validation Properties and Functions

There are eight built in date properties in Formworks, four date functions, two time
properties and one time function. These are designed to simplify working with dates
and provide a convenient alternative to the preceding chapter. The usual method of
comparing date values would entail using Lua functions to convert the dates to
seconds, then compare the seconds value. The days property returns the number of
days since 1st January 1900 (previous dates are returned as negative values). This makes
comparing and setting date elements much easier.

In addition, it is possible to set both the maximum and minimum acceptable dates for
a date field. These values can be set either as a number, or using any of the standard
date formats below. Most of these properties are both read and write, other than those
marked as read only.

Date Properties
● dateElement.value
● dateElement.days
● dateElement.minimumDate
● dateElement.minimumDateDays
● dateElement.maximumDate
● dateElement.maximumDateDays
● dateElement.seconds (read only)
● dateElement.weekday (read only)

Date Functions
● dateElement1.equalTo(dateElement2.value)
● FirstDate.lessThan(SecondDate.value)
● dateElement1.greaterThan(dateElement2.value)
● dateElement.age()
● date.notification(this.value, "This is your reminder ", "-PT8H");

o This function is somewhat different to the other date
functions. The notification function generates an email
upon submission of the form, containing a reminder, .ics
attachment. To add the reminder to a calendar, you open
the ics attachment and select the Add To Calendar
button. At present,
this function is
configured to
automatically set
meeting durations to
15 minutes.

Version 1.0 Page 25

Time Properties
● timeElement.value;

● timeElemement.seconds;

Time Functions
● Time2.subtractTime(Time1.minutes);

Setting Date Properties
The following are examples of setting the Formworks date properties. The same rules
apply to both the minimumDate property and the maximumDate property

dateElement.value = "07/08/18" Quotes required.

dateElement.days = 17110; Quotes optional.

dateElement.minimumDate = "today"; Quotes required.

dateElement.minimumDate = "2016/12/01"; or "14/12/2016" etc. Common date formats accepted.

dateElement.minimumDate = "formStartDate"; Quotes required.

dateElement.minimumDate = "formStartDate+20"; Quotes required.

dateElement.minimumDateDays = "17110" Quotes required.

dateElement.minimumDateDays = tostring(secondDateElement.days + 5);

dateElement.maximumDate = "today-5480" for example, to ensure a date of birth is 16 years ago, or

"18/10/2018" etc.

dateElement.maximumDateDays = 43953; for example would set the maximum date selectable to 4th May

2020.

dateElement.seconds can only be read in script, not set (read only).

Reading Date Properties
nVar = dateElement.days; nVar could contain say 46201 – a numeric value.

nVar = dateElement.maximumDate nVar would again contain a number.

strVar = dateElement.maximumDate strVar would contain say “today”, or “today+5” etc.
The point being that minimumDate and maximumDate returns the string that was
originally used to set the property’s value, not an actual date. The property would only
return a date string, if that was used to set its value, for example if you set the
maximumDate, or minimumDate, using an instruction like: dateElement.maximumDate =

"11/12/2016". This value would then become the return value.

dateElement.days returns the number of days since 1st January 1900. The Linux epoch date.
dateElement.days = 17800 would set the date element to that date.
nVar = dateElement.seconds. nVar would equal a value such as 1531353600.
nVar = dateElement.weekday. nVar would equal the day number of the week, with 0 being
Sunday. Therefore Wednesday would equal 3.
nVar = dateElement.age. nVar equals the number of years between current date and
dateElement.

Version 1.0 Page 26

Using Date Functions
boolVar = dateElement1.equalTo(dateElement2.value). Function returns true if two dates are the

same.
boolVar = FirstDate.lessThan(SecondDate.value); boolVar returns true if the first date is less than the
second date.

boolVar = dateElement1.greaterThan(dateElement2.value); boolVar is true if the first date is

greater than the second date.

Common date formats
These include: ddMMyy, dd/MM/yy, ddMMyyyy, dd/MM/yyyy, dd-MM-yyyy, yyyy-MM-
dd, yyyy/MM/dd.

Formworks Time Validation Properties
Time elements also have a seconds property. This returns the number of seconds
since 00:00. For example: nVar = timeElemement.seconds;

You can take one time field away from another time field, using the following syntax:

Difference.value = Time2.subtractTime(Time1.minutes);

Normally the first time element, Time1, will be lower than the second, Time2. For
example, start and end times for work on site might be 09:30 until 11:30. In which
case the function will return 120.

However if the period on site goes over midnight, the end time value might appear to
be less than the start time. For example, start at 23:30 and end at 01:30. This will
also return 120.

Version 1.0 Page 27

Device User’s Name, Email Address and Geo-Location
In addition to basic Lua functionality, it is also possible to gather certain information
within script, such as the user’s name, email address and the current geo-location, if
location services are enabled on the iPad.

Device User’s Name
To acquire the device user’s name in script, use the getCurrentUserName() function.
For example:

stringVariable = getCurrentUserName();

Device User’s Email Address
To acquire the email address in script, use the getCurrentUserEmail() function. For
example:

stringVariable = getCurrentUserEmail();

Note: The device user’s email address is taken from the email address entered when
they logged into the device, NOT the email address as contained in the Formworks
portal Manage Users & Roles screen. This may cause some problems when comparing
email addresses in script, due to the case sensitive nature of Lua. As you cannot enforce
the case employed when a device user logs into Formworks, you may wish to force the
return value of this function to upper or lower case.

Geo-Location Data
To acquire the Geo-location of the device in script, use the getCurrentLocation ()
function. For example:

stringVariable = getCurrentLocation();

This returns a comma separated latitude/longitude pair. This is returned as a single
string, example: 51.432100,0.397287.

Version 1.0 Page 28

Creating a Unique Reference
Generating a unique reference is a common requirement. The following example
takes the first and second (if available) initials of the user and combines them with the
current day, month, year, hours, minutes and seconds.

local initial1 = "";
local initial2 = "";
local user = getCurrentUserName();

initial1 = string.sub(user,1,1);

first, last = string.find(user," ");

if (first > 1 and string.len(user) >= first+1) then
 initial2 = string.sub(user,first+1,first+1);
end

dateString = os.date("%d%m%y%H%M%S");

UniqueReference.value = initial1 .. initial2 .. dateString;

Renaming PDF Export Files
You can change the name of the PDF files that Formworks exports. To do this, place a
Text field named __FileName on your template. This can be set to hidden.

The easiest way to use this function is to place script in the __FileName Text field
OnValidate property. You can include literal text and the value from other elements
on the template. For example, the following script could be placed in the OnValidate
event:

this.value = "Job Form " .. JobNumber.value .. " " .. VisitDate.value .. " " .. "{formid}";

In this example, the literal text “Job Form” would be included, then the value from the
JobNumber element, followed by a space, then the VisitDate value, followed by a
space, then the unique Formworks id of the form.

Please note: The unique Formworks ID is only available when the form is exported, it
cannot be used in script.

Version 1.0 Page 29

Formworks Alert Boxes, Notification Lists

Interactive alert Boxes
You can generate an alert box to immediately warn a device user that they may have
entered an incorrect value. For example, when the device user leaves a field (OnBlur
event), an alert box with the heading “Warning Message” and the message content,
“Are you certain that the date is correct?” could display, as in the example below. You
could include scripting that tests the values of fields, and displays alert messages if
appropriate. The alert box has an OK button to close it.

alert("Are you certain that the date is correct?", "Warning Message");

Please note that this option is case sensitive. If you spell alert with a capital ‘A’, it will
not work.

Notification Lists
An alternative to Alert boxes is the Notify
instruction set. These instructions construct
a list of notices that can be displayed to the
user.

notify(message [, autoShowNotificationList])

warning(message [, autoShowNotificationList])

error(message [, autoShowNotificationList])

clearAllNotifications()

showNotificationList()

hideNotificationList()

These methods allow messages to be added to, and managed within, the notification
area (accessed by tapping on the “i” icon in the top bar). The different methods each
display the appropriate type of icon next to the message (e.g. blue circle for
notification, yellow triangle for warning, red stop sign for error, etc.). Notifications are
displayed with the most recent one at the top of the list. If the optional parameter
autoShowNotificationList is included and set to “1”, the notification list will be shown.
Two examples of the notify instruction would be:

notify("Ordinary Message",1); -- Places text Ordinary Message into the notify list and

displays list.

notify("Ordinary Message"); -- Places text into list, without displaying.

There is no limit to the number of messages that can be added to the notification
area. All notifications are removed when a form is closed or submitted.

Version 1.0 Page 30

Scripting Specific Elements

Help Element
The Help element allows you to place a help
icon on a template. The help message can be
entered into the help element using the
Template Designer, or it can be updated
dynamically using the element’s value
property, via script. For example:

helpElement.value = "New help content";

The benefit of using script, is that the help text can be tailored to reflect choices that
have been made by the device user.

In addition, you can change the visibility of the
help (?) icon, so that it only displays where
relevant.

But probably the most powerful feature of the
help element, is that you can include hypertext
links in the text. When selected by the device user, the hypertext links will load a web
page, and display it in the default browser. Using this method, you could even display
a PDF document in the default reader. When you combine the ability to change the
help text dynamically, with the ability to place hypertext links within the text, you can
achieve quite powerful functionality with this element.

Single Selection (List Box)
At its simplest, you can populate a Single Selection list box in script using the .add
method. For example:

listBox.add("Option 1");

To include a different return value to the value being displayed, place the return value
first, separated with a comma:

listBox.add("JBH","John B Henry");

Version 1.0 Page 31

Table Element

Filter Table Function
The Filter Table Function is the most powerful of the table functions and is described
here in detail:

tableName/alias.filterTable(Column, "title/value", Operator, Value, hidden Rows)

Parameter Description

Column Number representing the column to be used in the filter operation.
Columns are based on 1 as the first column.

Title/Value String representing the basis of the filter. Its value can be either “title”
or “value”. If you select “title”, the value within the element is ignored
and only the title property of the element is evaluated. If you select
“value”, the value content property of the element is evaluated.

Operator String representing the operator used to filter the table “==“ “>” “<”
“>=” “<=” “contains” “doesNotContain”

Value String/decimal.

Hidden Rows String choosing whether hidden rows are included in the filter.

General Table Functions
Table.enabled = true/false; Sets / reads enabled

status.

Table.hideColumn(string/int) and Table.showColumn(string/int) Hide / Reveal columns.

Table.hideRow(string/int) and Table.showRow(string/int) Hide / Reveal rows.

Table.enableColumn(string/int) and Table.disableColumn(string/int) Enable / Disable columns.

Table.enableRow(string/int) and Table.disableRow(string/int) Enable / Disable rows.

Table.hideColumnHeaders() and Table.showColumnHeaders(); Hides / Reveals
Headers

Table.hideBorders() and Table.showBorders() Hides / Reveals grid
lines.

Rows = Table.rowCount() Returns the table row
count

Table.column_3.visible = true/false; Sets column visibility.

Version 1.0 Page 32

Accessing Table Cells within Loops
Individual cells within a table can take their value
from an element within the cell. In this example, the
table contains two columns and three rows. Column
two contains text box elements that are to be
summed.

In the same way as you would loop through any set of text boxes that have similar
names, you
can loop
through the
cells of the
table,
extracting
the values
from each cell. However, as the individual cells are only identified by their place within
the table, the name of the text boxes is irrelevant and they can therefore be named
more meaningfully.

If you don’t wish to hard code the number of rows into the for do loop, you could
substitute the number 3 in the example with the Table.rowCount() function.

Setting Row Visibility within Loops

To be able to hide rows, say on form.OnOpen or submission is a common requirement.
The following script demonstrates how to do this:

for i = 1,10 do
Page1["SectionName"]["Table1"]["row_" .. i].visible =
Page1["SectionName"]["Table1"]["cell_1_" .. i].value ~= "";

end

Methods of Accessing Individual Table Cells
You can refer to the value of the first element in a table cell, simply by referring to the
cell itself. As you can see from the above example, the fully qualified name of say, the
first cell in the table would be:

Page1.Section1.Table1.cell_1_1.value;

Version 1.0 Page 33

Forms

Automatically opening a new blank form
You can request that the
device automatically loads a
new blank form template,
when the user submits the
current form. This may be
useful for example, where a
continuation, (child) form will
always follow a parent form, or
when the device user will
always be working with the
same type of form. To do this,
use the openFormWithName()
function. For example:

openFormWithName("Project Management Schedule");

Place this statement in the forms OnSubmitAndConfirm event, and when the device
user submits the current form, the screen will clear, and a new blank form of the type
specified will load.

A common scenario, would be to place a list of ‘child’ or related forms in a drop down
list box within the parent form. When a child form is selected, you could place values
that you wish passed to the child form, within global variables. Script could be placed
in the child forms OnOpen event, to read the global variables, and place their values
into reference fields for example, as shown in the screen capture.

Automatically closing and deleting a form
You can place code in a forms
events, for example the
OnOpen event, that can test
the values of fields and based
on the result, force a form to
close, with or without saving,
and even to delete the form
from the iPad. The script in the following screen capture tests the value of the Status
field, and if this contains the string “Old”, a message box is displayed to the user. When
the user selects the “OK” button, the form closes, without saving, and is deleted from
the device. Changing the false instruction in the form.close instruction to true, will
cause the form to be saved prior to closing.

Version 1.0 Page 34

Version 1.0 Page 35

Dynamically populating a Single Selection Dropdown List box
Whilst you can populate Single
Selection elements, by entering the
values against them in the Template
Designer, this may not always be
convenient. For example, to
maintain a large number of single
selection lists, each containing
exactly the same values, would
entail changing every list element, each time there was a change to the list content.
An alternative would be to store the contents of the list in a Lua table, and dynamically
load this table into each of the single selection elements when the form opens. In the
example, the same five items are placed into seven separate single selection elements
when the form opens. These seven lists can all be maintained from this one location in
this fashion.

Note: Populating a list box from a table is handled far more efficiently and simpler in
Formworks by using Local Databases. These give you the option of changing the values
without republishing the template. However Formworks Databases are subject to
licence restrictions.

Dynamically populating a Single Selection List based on values in
another
In the form’s OnOpen
event, create a Lua
table using the
following syntax,
where the terms in
black, in this instance
Clothing, Curtains, Linen and Miscellaneous are the options in the first single selection
element.

Note: Only single word selections can be used. For example, the term “Clothing and
Shoes” would fail.

Note: As mentioned above, tables are handled better in the latest release of Formworks
by using the Local Databases option.

In the OnValueChange event of the
first single selection element, place
the script based on this capture,
where Items is the alias for the
second single selection element –
the one to be populated based on
the selections from the first
element.

Version 1.0 Page 36

You MUST include the check “if this.value ~= "" then”, to confirm that there is a value in the
first single selection element. If you omit this check, the form will run correctly in
Design/Test mode, but the template will fail to load on the iPad, with a scripting error
when the template is subsequently published.

No script is required in the second (Items) single selection element.

Version 1.0 Page 37

Elements
All elements support script and have properties you can change using script.
Elements are explained more fully in the Formworks General Guide, and are just
mentioned here for completeness. These elements include:

Containers
Page The main element container. You can have multiple pages.

Section A container element that horizontally spans a page.

Group A container to group elements without horizontally spanning the
page.
Table A container element with cells across rows and columns. Can

contain other elements

Fields
Text Can contain alpha, numeric, email address data etc.
Paragraph Text Contains multiple lines of free format text. You specify the
number of lines.
Date Date element, that can display a calendar to the device user.
Time Time element. Output is formatted as a time.
Single Selection Mutually exclusive options, like Windows radio buttons.
Multiple Selection Multiple selection options, like a Windows check box list.
Checkbox Single selection, true or false element.
Signature This element displays an area where someone can sign.
Photo Provides the option either taking a photo, or using one already
captured.
Sketch Provides a sketching area. The background can be taken from an
image file.

Other Elements
Label Simple descriptive element. The contents can be exported with
other data.
Image Embedded image that can be displayed to the user.
Button Provides the option of running script on demand.
Line Provides a simple separator between elements. Can be used for

page breaks in PDF exports.
Help Places a help (?) icon on the template. The help text can be

entered on the Template designer, or set dynamically in script.
The visibility of the help icon can also be changed in script. The
help text can contain hypertext links.

The usual method of entering script would be to:

● Select the element on the form
● Select the script ‘</>’ button
● Select the event from the left side of the Script Template window
● Enter your script against the event in the Script Template window

Version 1.0 Page 38

Events
When you select an element, a script button appears which looks like ‘</>’. Once
selected the events that can be used in script are listed on the left hand side of the
Script Template window. These events will differ depending on whether you select a
Form, Page, Section, or an element that can accept input, such as a text box. Button
elements have a unique event called ‘OnTap’ that is activated when the button is
pressed.

Form Page Section Element

You can quickly check if any scripting has
been entered against an element’s events, by
selecting the element and viewing the script
button (‘</>’). If any scripts exist against
events for the element the button will appear
green, whereas if the element does not have
any script against it, the button will appear grey. Commented out scripting will still
show as green.

Selecting the script button will open
the Script Template window and
display the script for the highlighted
event. If no code has been entered,
a blank template will display with no
events highlighted.

Version 1.0 Page 39

Properties
Properties are values that an element possesses. These properties include, “enabled”,
“message”, “valid” and “visible”. When you use script to change these properties, you
can change the way an element behaves or appears on the device.

Methods
Methods are instructions that you use to change an element’s properties. Normally you
would use the Script Template window to place these method ‘calls’ in an element’s
events. Most elements support the OnValidate() and focus() methods. The OnValidate
method will run any code in the target element’s OnValidate event. The focus method
will set the focus to the target element.

To set the focus to an element that is on a different page to that being viewed on the
device, first use the form.changePage() method to select the required page. The format
for using this is:

form.changePage("aliasName"), if an alias has been allocated to the page, otherwise, use the

Page name. This must be enclosed in quotes, as in the example. As always, the

instructions are case sensitive.

The format to use of the OnValidate() and focus methods is:

element.OnValidate(); and element.focus();

Version 1.0 Page 40

The Script Template window

Introduction
Script can be entered against any
of an element’s events, but the
Message and Valid properties can
only be set in the OnValidate
event. To place script against an
event, select the element, then
the script button. The Script
Template window will open with
the element name selected in the
top left, and the possible events underneath Then select which event you would like to
place the script in, this will highlight it in blue. You can change the element selected
by hovering over the element path separated by ‘/’ to enter additional script against
any other element or events.

OnValidate Event - Checking for valid input
The commonest use of scripting is to ensure that valid entries have been made. You
can perform this by selecting the
element, then selecting the
OnValidate event. You test the
value for the element and if this is
incorrect, you set the element’s
Valid property to false and display
an appropriate error message. The
term ‘this’ refers to the selected
element, so the line “this.valid =
false” is setting the
Page1.Section1.Name text box
element’s Valid property to false.
This will prevent the form from
submitting and cause the value in
the element’s Message property to be displayed. In this instance, the message property
has been set to “Please enter your name”.

Using the “and” keyword and Alias names – validating multiple values
It is possible to check the values
from multiple elements in script. To
achieve this, place the validation
code in the OnValidate event of one
of the elements and refer to the
other elements either by their full
names, or by their Aliases. Aliases are unique names supplied when the elements are
named in the Form Designer. Obviously employing aliases entails less typing. You use
the “and” keyword to combine the fields of the query.

Version 1.0 Page 41

Version 1.0 Page 42

Checking for empty elements/fields
You can check if most of the elements have been left empty by testing whether they
have a value of an empty string (“”). The elements that can be tested this way include:

● Text elements (including text, number, email, phone etc).
● Paragraph text
● Date
● Time
● Single-select
● Photo
● Sketch
● Signature

To confirm if a checkbox has been
selected, you use the true and false
keywords. As demonstrated in this
example.

To confirm if a selection has been made from a multiple selection element, you can use
the count(), countSelected() and getOption() functions. Count() returns the number of
items in a multi-select element,
countSelected() returns the
number of items selected and
getOption().value will return true or
false, depending on whether the
option specified within the
brackets has been selected. For
example, this.getOption("Option
1").value would return true if “Option 1” had been selected.

Device Submit Window
When a device user attempts
to submit a form, and the
script for a required element
sets the element’s Valid
property to false, a message
will appear on the Form
Submission window
informing the user that there
is an error in their input. They
will be prevented from
submitting the form. Multiple
elements can have their Valid properties controlled in this way, and an individual line
of text will appear on the device for each element that has its Message property set to
a value.

You can set the Message property for an element without setting its Valid property to
false. In this way you can warn a user that their input may be incorrect, without

Version 1.0 Page 43

preventing them from submitting the form. When the Message property is set in this
way, it is indicated on the device by an amber circle containing an exclamation mark.

OnValueChange event
The OnValidate event is used
to test data when the device
user submits a form. But you
may wish to change the value
or condition of an element
prior to this point – for
example when the user enters
data in a text box, or selects a
value from a drop down list. In
this case, you could use the OnValueChange event.

When a user makes a change, such as
selecting a value from a single selection
element, it is possible to change the
values of another element’s properties.
For example, if the user selected ‘House’
from a single selection element, you could
disable other elements that relate to flats.
In this example, if the “Other” option in a
salutation single selection element is selected, the element’s OnValueChange event is
used to enable a text element (TitleIfOther), to permit the user to enter an alternative
title.

The OnValidate event of the TitleIfOther element then ensures that if “Other” has been
selected, text has been entered.

A more complex example could be to
check the values from a list of names, and
use them to populate an email address
field. The script in the following example
will populate the hidden field, “SendTo”
with a value depending on the selection
from a single selection element. If “Other”
is selected, then the “OtherEmailAddress”
field is enabled, so it can be used instead.
It is also possible to directly acquire the device user’s email address, using the
getCurrentUserEmail() function, which returns a string value of the logged in user’s
email address.

Version 1.0 Page 44

Intellisense
Formworks supports rudimentary
Intellisense in version 2. Currently this
works using either the “this” keyword,
or element alias names. To use
Intellisense, you need to use the fully
qualified element name or Alias, enter a
full-stop, then select the Ctrl and Space
keys simultaneously. A drop down list
of available properties will appear.

Version 1.0 Page 45

Calculated Fields

Introduction
Using the value from one field to populate another is covered throughout this guide.
But because performing calculations and displaying the result is so basic to many user’s
requirements, it is covered specifically here.

Before performing a calculation based on the contents of a field, you need to confirm
that the field is not empty, and actually contains a value. Otherwise your script will
generate an error. You do this by testing the field’s value with the tonumber() function.

The following example is quite typical. Changing the values within a number of fields,
such as quantity and price, can cause the total to automatically update. To achieve
this, you place the calculating code in the OnValidate event of the total field, and call
the OnValidate event from the OnBlur event of the quantity and price fields. This
method causes the value of the total to be updated as the user exits the fields that are
involved in the calculation.

You should also check in case the user goes back to the
field and subsequently removes a value. That is why in the
example, the code not only enters the multiplication of the
price by the quantity if values have been entered, but also
places an empty string in the total field if no value is found.

You may wish to allocate Alias names to the
fields involved in the calculations, to reduce
the complexity of the script. It may also be
useful to make the total fields ‘Read Only’ to
prevent users from entering values directly.

Where possible, combine your script with the same events of an element. For example,
if you have two pieces of script, one within the OnBlur event, and one in the OnValidate
event, and these can both be effectively contained in the OnValidate event, then do so.
Events have a processing overhead and reducing the number employed can speed up
device input.

Version 1.0 Page 46

Global Variables

Introduction
Version II of Formworks has introduced the concept of Global Variables. Global
Variables are variables that are entered in one form, and can then be retrieved by the
same user from the device’s memory and used on subsequent forms. This data is set on
a per-user / device basis. Global variables retain their value for 90 days from the point
where they are set. Following this point, they must be re-saved to retain their values.

Two methods are employed to work with Global Variables - setUserData and
getUserData. The format for their use is:

setUserData("Key",value);

getUserData("Key");

For example, to save the value from a text box with an alias of reference, into a Global
Variable named Reference, the two methods would be coded as follows:

setUserData("Reference",reference.value); -- Store the value of the reference element.

getUserData("Reference"); -- Retrieve the value from “Reference”.

In this example, the OnSubmitAndConfirm
event of a form is used to capture the value
from a text element with an alias of
reference, and store it in a global variable
named Reference. You can then employ
the OnOpen event of a different form to
retrieve the value from the Global Variable
Reference, and place it into the Value
property of the second forms Reference
field.

Version 1.0 Page 47

Custom Properties

Introduction
Custom Properties are used to store temporary values that are globally available to any
page on a form. Custom Properties are similar to Global variables and hidden fields, but
they differ in a number of important ways. Unlike Hidden fields, they are not exported
and will not appear in CSV or XML output. Unlike Global variables, the values in Custom
properties will not be saved when a form is closed.

Custom properties can be used instead of Hidden fields, in a situation where the value
doesn’t need to (or mustn’t) be submitted and exported along with the rest of the field
data. They can contain other data types in addition to text. See the comparison chart
below for a comparison between the features of Custom properties, Hidden fields and
Global variables.

Custom properties can have any name except the reserved property names of “title”,
“visible”, “enabled”, “valid”, and “message”. Custom properties are global to a form,
and therefore available from any page. They can be set and retrieved in the same way
as a standard variable – for example:

form.roomsWithSmokeAlarm = 4;

The above example could be used on house inspection forms where there are sections
for each room and each section contains a check box indicating if a smoke alarm is
present in the room. The OnValueChanged event for each of these check boxes could
update the form.roomsWithSmokeAlarm Custom property and the value of this
property then used elsewhere on the form.

Features of Custom properties
● Globally available to any page within a form.
● Temporary storage. Their value is lost when the form is saved or submitted.
● Does not become part of the output, and will not appear on CSV, PDF or XML

data.
● Must not be named the same as standard properties.
● Values are set using the same notation as standard variables.
● Can contain any data type.

Comparison chart

Feature Custom Props Hidden Fields Global Fields
Globally available in form Yes Yes Yes
Saved on device after
submission

No No Yes

Forms part of the output data No Yes No
Part of the User Interface No Yes No
Can contain any data type Yes Yes Yes

Version 1.0 Page 48

Date and Time Functions

Calculating the days between two dates
To insert today’s date or time into a field, prior to the forms submission, place the
following script into the elements OnValidate
event:

this.value = today();

or
this.value = os.date("%H:%M");

Descriptive text can also be included with the os.date function, for example:

os.date("today is %A, in %B")

this script will return: today is Tuesday, in May

Because this script has been entered against the element’s OnValidate event, it will not
run until the form is submitted, and therefore, the date will not be visible to the user of
the form.

Lua also supports the os.time function. This function can be used both with and without
parameters. Without parameters, it returns a number of seconds, representing the
current Operating System date and time. The returned value can be stored to a
variable, or used in calculations against the current date. When used with parameters,
the os.time function can return the number of seconds represented by a passed
date/time.

● In the example below, lines 1 to 5 are used to create the variables used in the
code that follows.

● Lines 7 to 9 split the date entered in the date element, StartDate into its year,
month and date values, using the string.sub() function, storing them in the
variables created above.

● Line 11 calls the os.time function,
passing the year, month and day
values to the os.time function as a
Lua table, and stores the seconds
value returned in the Start
variable. The first three
parameters are required.
Subsequent parameters, hours
etc., are assumed 0 if not supplied.

● Line 13 takes the seconds value, calculated from the StartDate date element and
subtracts it from the current operating system time. Then divides it by 60, to
calculate the minutes difference, then divides it by 60 again, to calculate the
hours difference.

Version 1.0 Page 49

● Line 14 places the number of hours calculated in the previous line, and places
them in the Difference text box.

Whilst fewer lines could be used to achieve the same result, I have used this example
to highlight the individual steps required to calculate the difference between two
dates.

Version 1.0 Page 50

Calculating the difference in minutes between two times
Calculating the difference between two times is a common requirement. In the
example, the user would
enter the time they
started and when they
finished. These times
could also be entered by tapping on a button element.

The system automatically performs the calculations to place the total in hours, and
fractions of hours in the Hours Worked field. Care has to be taken here, as the
employee may work over the midnight period.

To calculate the difference in time the ‘subtractTime()’ function can be utilised. The
below example is placed within a button field and initially checks that the two time
fields (startTime and endTime) both have a value. Depending on how you want to
display the total time there are a couple of ways to do this. If you need the total time
in hours as a decimal, the code on line 2 will give you that result. If you need the total
in minutes, line 3 will achieve this.

Version 1.0 Page 51

Operating System Time Function
It is also possible to use the operating system time (os.time) function, with formatting
characters, to extract say the current hour and minutes.

Note 1: Presently, date fields that have been completed by hand, return a date string,
in the format yyyymmdd. Prepopulated date elements return a number of seconds date
representation.

Note 2: Values are written to date elements in the format dd/mm/yyyy, but when read
in script, a date element returns its value in the format yyyymmdd.

The following is a table of the formatting characters that can be used with the os.time()
function.

%a abbreviated weekday name (e.g.,
Wed)

%A full weekday name (e.g., Wednesday)
%b abbreviated month name (e.g., Sep)
%B full month name (e.g., September)

%c date and time (e.g., 09/16/98
23:48:10)

%d day of the month (16) [01-31]

%H hour, using a 24-hour clock (23) [00-
23]

%I hour, using a 12-hour clock (11) [01-
12]

%
M minute (48) [00-59]

%
m month (09) [01-12]

%p either "am" or "pm" (pm)
%S second (10) [00-61]
%
w

weekday (3) [0-6 = Sunday-
Saturday]

%x date (e.g., 09/16/98)
%X time (e.g., 23:48:10)
%Y full year (1998)
%y two-digit year (98) [00-99]
%
% the character `%´

Version 1.0 Page 52

Table Elements Scripting

Referencing Table cells in script
You can refer to the value property of an element in a Table cell, without using the
elements name, by referencing the value property of the cell in which the element is
located. Only one element, the first encountered in the grid cell, can be referenced
using this syntax. This method of referencing can only be used for elements that have

a value property, for example, text boxes.

Looping through Table cells
As you don’t need to refer to the elements within a table cell by name, you can create
a looping structure very simply. This example uses the third column of a table and loops
through the first three rows, placing the value 10 in an element.

for i = 1,3 do

 Page1["Audit"]["MajorRisks"]["cell_3_" .. i].value = "10";

end

Version 1.0 Page 53

Databases

Introduction
Creating Lua tables within the form template has the limitation that the table items,
which normally contain the contents of a down list box, are hard coded into the
template. This means that should an item need deleting or replacing, the template
would need to be duplicated, amended, published, and the original template eventually
retired.

Databases offer a convenient alternative to this process, whereby tables of data in the
shape of CSV (Comma Separated Value) files, can be uploaded to the Formworks portal,
and synchronised to the user’s device. There are many possible uses for databases
within a form, and examples could include:

List boxes

● Populating a drop down list box with client names, or branch addresses and
contact details, rather than hard coding them into the template.

● Populating a second list box (or text box), based on the value selected in another
list box. Multi-tiered list box population is supported in this fashion.

Quotations and calculation
● Providing a look-up database of cost values for products selected on a form.

Databases can contain all the product cost information necessary to provide up
to date quotes as a form is completed.

Workflow and Project management
● Returning an email address or URL for a contact/employee selected on a form.

A form could be automatically emailed to a contact or group of contacts,
depending on information within the form.

● As a form is aware of the user’s name when it opens, list boxes could be
populated with information specific to that user. Using databases the system
could populate list boxes with only the projects or clients that are applicable.

● You could automatically provide the device user with a list of additional forms
that should be completed, based on the data entered within the current form.
For example, a certain client may always require an additional ‘Notes’
document.

● The ‘rules’ regarding specific clients could be represented within databases
which are subsequently interpreted within script to guide user input

Version 1.0 Page 54

Maintaining your databases
When you have prepared the CSV file, select Admin, then Databases.

Creating and Updating databases

Making a CSV data file
To create a Formworks database, you need to save the database to a CSV file. The
easiest way to do this is probably to create an Excel worksheet, placing your database
data in columns, then save it as a CSV file instead of a workbook, using the File, Save
As option, then change the file type to CSV.

Uploading the CSV data file
● From the databases tab,

enter the name of the new
database in the Name field
on the right of the screen.
The name must not contain
any spaces, but you can use
underscores, for example,
staff_list.

● Enter a description.
● Browse to the CSV file and

select it.
● Select Save.

o A message indicating that the file has been saved will display.
o The file will appear in the Saved Databases section. The name would have

been converted to lowercase.
o The same process is used both to create a new database and to update

an existing one. To update an existing database, simply use the same
name.

Note:

Version 1.0 Page 55

You cannot delete a database that is in use by a published template. The template must
be retired first. If you delete a database in use by a template in Design state, the
database will need to be added via the Template Designer.

Using databases on your form templates
Once you have uploaded your database, use the
Template Designer screen to attach it to your
template. On the Form Properties section of the
designer above Template Icon, use the Database
drop down list to select the database you wish to
use in your template.

Populating a basic list box
The Script Template
area lists which
databases are
available for use
within your code,
and if you select a
database, the
columns drop down
list will inform you of the column names, so you can include them in your queries. The
most common mistake users make with databases is using column names in script that
aren’t in the database. You can easily check column names with the columns drop
down list. As you can see, if and do statements must always have a matching end
statement.

The script example here is the basic code to populate a list box from a database column.
The database is called listdatabase, and we are populating the Nationality list box with
the values in the Nationality column. Both the display and return (key) value of the
single select element will be the same. It is common to place such basic list box
populating code in the form’s OnOpen event. However, it can also be placed in the
OnValueChange events of other list boxes etc.

Lines 1 and 2 create the query and extract the Nationality column from the listdatabase
database. Line 4 clears the contents of the Nationality list box, ready for new values.
Lines 6 and 16 are an if, end test, which checks that records have been returned from
the database that match your query. Lines 7 and 15 are a do, end loop that processes
each record extracted. Lines 10 and 14 are a nested do, end loop that processes every
column in the ‘current’ record. Line 11 checks the length of the value in the Nationality
column is greater than 0. This has been placed here as a safeguard. You could also
have amended the query to: "select distinct Nationality from listdatabase where

Version 1.0 Page 56

length(Nationality) > 0"; to achieve the same result. Line 12 populates the Nationality
list box with the value of the column.

Note: Populating a basic list box in the Formworks XD App can be done much simpler
as it is now a built in function. This has been reduced down to one line, which can be
placed in the OnOpen event of a template or in the OnValueChange event of a
dropdown field. This new function requires 4 parameters, the database name, the
column you wish to pull data from, the keyValue and the displayValue respectively. The
below example will populate a list box given the alias ProductList from two database
columns. The database is called Products, and the column it looks for is called Unit. The
key value will come from the Rate column and the display value from the Unit column.
The key value will always be displayed within the ‘[]’ brackets.

ProductList.setDatabaseConfiguration("Products", "Unit", "[Rate]", "Unit");

To display more than one column value in the list box, columns can be concatenated
using ‘||’. In the below example, the Rate and Unit columns will be displayed in the list
box.

ProductList.setDatabaseConfiguration("Products", "Unit", "[Rate]", "Rate || ', ' || Unit");

Populating a list box with different display and return values
List boxes can contain both display and return (key) values that are hidden from the
iPad device user. For example, a list box can display the name, “Alan L Major”, but
return the code “ALM” when selected. The next example demonstrates how to query
the index variable to tell which database column is currently being processed within
the do, end loop, so you can use both a display and return value.

The important thing
to note, is that as
per line 14, the
column headings
will always be
stored in the
“index” variable,
and the value of the
column will always
be in the “value”
variable. This permits script like this example, where we are testing the index to see
which column is currently being processed.

You will notice that whilst the column heading Staff Code needs to be placed in square
brackets for the SQL query on line 1, it must not be in brackets for the test of the index
variable on line 17. Placing square brackets in the test on Line 17 will mean that the
column will never be found and the test never true.

Version 1.0 Page 57

In this example, if the column being processed is StaffName, the value from that column
is placed in the description variable. If the column is Staff Code, the value is placed in
the keyData variable. After processing leaves the do, end loop that processes the
current record, (Lines 14 and 20), we populate the StaffList list box on line 22. The
keyData forms the hidden, return value, and description is the value that will be
displayed in the list box. Then the processing continues to the next record extracted
from the database, and the cycle (Lines 11 and 24) continues.

So, basically you have two loops, the first cycles through every individual record
extracted from the database (Lines 11,24), and the second cycles through the column
headings of the current record being processed (Lines 14, 20).

It may help you visualise the if / end, and do / end constructs by indenting them as I
have in these examples. Otherwise it is easy to miss a matching end statement.

Note: To populate a listbox with different display and return values in the Formworks
XD App is similar to the example shown in the ‘Populating a basic list box’ section. In
the below example the return value will be from the County column, while the display
value will be the Postcode.

County.setDatabaseConfiguration("counties", "County", "[County]", "Postcode");

Version 1.0 Page 58

The SQLite Select Statement
Within your script code, you use SQLite select statements to retrieve data rows from
your databases. There are many sources of information on the Internet regarding
SQLite and how to format your queries, and one good source of information is:

https://sqlite.org/lang_select.html

http://www.tutorialspoint.com/sqlite/sqlite_select_query.htm

These can range from relatively simples queries that return all the databases columns
(* character):

select * from Staff_list

Where you simply wish to populate the text of a list box, to more complex queries
where the values in more than one column of the database must meet certain criteria.
For example, if you were searching for both an area and skill set match. Where you do
not require all the columns of a database to be returned, you can specify the column
names:

select StaffID, Name from Staff_list

Querying using Wild Cards
The above script works fine if you know exactly what value you are using the query
your databases. But you may only have a partial value. For example, you may wish to
retrieve all clients with DA contained within their postcodes. To accomplish this, you
would use wild cards. There are two wild card characters, the underscore (_) and the
percent character (%). The underscore represents a single character, whilst the %
represents any number of characters. To return a results set that contained all clients
with surnames beginning with “smi”, the query might be:

select ClientName, ContactNumber from Client_List where Surname like 'smi%'

This would return all records with any number of characters following the smi. To return
all client records that contained smi anywhere within the surname name field:

select ClientName, ContactNumber from Client_List where Surname like '%smi%'

The percent characters representing any number of characters both before and after
the smi characters.

Querying Multiple Columns
The ‘and’ clause can be
added to your queries to
query multiple database
columns. For example, to
query the Staff_list

https://sqlite.org/lang_select.html
http://www.tutorialspoint.com/sqlite/sqlite_select_query.htm

Version 1.0 Page 59

database by both part of the name, and an exact area match, the query could be:

"select StaffID, Name from Staff_list where Name like '%smi%' and Area = 'SE'"

And if you wished to substitute the values in text box elements for the staff name and
area:

"select StaffID, Name from Staff_list where Name like '%" .. StaffName.value .. "%' and Area = '" .. Area.value

.. "' order by Name"

Combining And, Or and Where statements
You can combine the key words, ‘and’ and ‘or’ into your query. The following example
shows how to do this. If you look closely, you will notice that numeric values do not
need to be enclosed within single quotes, in the way text does.

"select StaffID, Name from Staff_list where name like '%" .. StaffName.value .. "%' and Area = '" .. Area.value

.. "' or Salary > " .. Salary.value .. " order by Name"

When the values from your forms elements have been inserted into the query, it could
look like this:

"Select StaffID, Name from Staff_List where Name like '%Alan%' and Area = 'NE' or Salary > 30000 order

by Name"

Note: SQLite uses a single = character to represent an exact match, whilst Lua uses two
== to indicate that one value equals another.

Version 1.0 Page 60

Joining Databases

Types of Joins
There are different types of joins available in SQLite:

● INNER JOIN: returns rows when there is a match in both databases.

● LEFT JOIN: returns all rows from the left database, even if there are no matches
in the right database.

● RIGHT JOIN: returns all rows from the right database, even if there are no
matches in the left database.

● FULL JOIN: returns rows when there is a match in one of the databases.

● SELF JOIN: is used to join a database to itself as if the database were two
databases, temporarily renaming at least one database in the SQL statement.

● CARTESIAN JOIN: returns the Cartesian product of the sets of records from the
two or more joined databases.

Operators
Different operators can be used to join databases, i.e., such as =, <, >, <>, <=, >=, !=,
BETWEEN, LIKE, and NOT. However, the most common operator is the equal symbol.

The example below demonstrates the use of an INNER JOIN. This has been used to join
two normalised databases, a situation common with relational databases. The area has
been represented as a code,(N,S,E,W) in the Staff_list database, whilst the Area_Code
database contains both the codes and description of the area. The two databases are
joined in the query by the Area_Code field, so staff details can be extracted from the
Staff_list database, and the description of the area retrieved from the Area_list
database. Where a field name is present in both databases, it is good practice to
precede its name with the database name, to avoid confusion. In this instance;
Area_list.Area_Code. In the example, the description of the area is placed in the

Areaname textbox in line 18.

http://www.tutorialspoint.com/sql/sql-inner-joins.htm
http://www.tutorialspoint.com/sql/sql-inner-joins.htm
http://www.tutorialspoint.com/sql/sql-left-joins.htm
http://www.tutorialspoint.com/sql/sql-left-joins.htm
http://www.tutorialspoint.com/sql/sql-right-joins.htm
http://www.tutorialspoint.com/sql/sql-right-joins.htm
http://www.tutorialspoint.com/sql/sql-full-joins.htm
http://www.tutorialspoint.com/sql/sql-full-joins.htm
http://www.tutorialspoint.com/sql/sql-self-joins.htm
http://www.tutorialspoint.com/sql/sql-self-joins.htm
http://www.tutorialspoint.com/sql/sql-cartesian-joins.htm
http://www.tutorialspoint.com/sql/sql-cartesian-joins.htm

Version 1.0 Page 61

Populating a List box from a Database
Populating a drop down list box is probably the most common use of database and has
been used for most of the screen captures on this subject. If you hard code a list of say
clients or staff names using the Template Designer, you risk one or more of the names
changing. To amend the list on a published form would entail creating a duplicate of
the form, amending the duplicate, publishing it and retiring the original template. But
with databases you can simply upload a replacement CSV file.

In this example we are populating a list box with an alias name of Staff, with a list of
staff names and staff id’s. The script has been placed in the form’s OnOpen event, so
the list box is populated as soon as the user opens it.

● Line 1: We store the SQL
query in a local variable,
“query”. We are
selecting two fields from
the Staff_list database,
StaffID and Name. To
select all the columns,
we would use the *
character instead of
listing them.

● Line 2: We use the scriptExecSQL() function to execute the query against the
Staff_list database. The scriptExecSQL function returns two parameters, an array
of Lua databases, and a string indicating if an error arose during the execution
of the query. If the query executes correctly, the error parameter will equal “”.

● Line 4: We clear any values from the list box, preparing it for the values from the
Staff_list database.

● Line 6: Tests the results variable, to see if any values have been returned by the
query.

● Lines 7 and 8 set up the local variables to hold the key and display values for the
list box.

● Line 10: Starts to iterate through the data rows returned by the query.
● Line 11: Places the entire data row in the databaseRow variable.
● Lines 13 through 19 iterate through the columns:

o The index value will always return the column name. You should NEVER
rely on the order of the columns to retrieve data.

o In this instance, the column value will be stored in the value variable.
o Using this method, you can retrieve the value from any column

name/value pair.
● Line 21: Pushes the StaffID and name into the Staff list box.

o The name will be displayed, and the staff id returned in exports of say
CSV or XML.

Version 1.0 Page 62

o If you only require a description in the list box, with no specific code
returned, i.e., if the staff name is sufficient without the staff id, then you
would just use Staff.add(value);

Version 1.0 Page 63

Populating cascading list boxes
To populate a second list box, based on the selection of an entry in the first list box,
you would introduce a “where” clause in the SQL query. For example:

"select ClientName, ClientCode from Clients where area = '" .. Areas.value .. "'";

This query would take the value from the Areas element, (either a list box or text box),
and when executed against the Client database, only extract clients that matched the
area code. The .. characters are used to concatenate the value from the Areas element
into the query, and the apostrophe character (') that is required to define the appended
value. So the actual query string should look something like this:

"select ClientName, ClientCode from Clients where area = 'Area1'"

Once you have extracted the results set from the database, you can use the above code
to iterate through the data records, using the index value to identify the field and the
value variable to retrieve the column value. Using this method, you would normally
never require to extract more than two columns at a time from a database; one to
display on a list box, and one as the return value.

Local Databases on the device
You can monitor the status of
the databases on the device,
from the Settings(i) screen.
Databases are displayed on the
left side of the Data Transfers
tab of the Settings screen.

The database name, and date
and time the database ‘version’
was uploaded to the portal is
displayed here.

Databases are Downloaded to
the device, then Imported for
use by the form templates. The
status of both of these stages is indicated real-time as they load.

If a database fails to load for any reason, the Resync Databases option will completely
delete the databases from the device, and download them again.

Version 1.0 Page 64

Post Code Lookup

Introduction
Formworks provides three functions to integrate with web services. The example
provided below details how to integrate a Formworks application with the Post Code
Anywhere post code lookup service.

http.checkConnected(), http.getStringFromUrl(url) and http.getTableFromJSON(url)

The http.getTableFromJSON() function is the main one involved in post code lookups..
This function passes a URL to the post code lookup web service, and receives a string
of address data back. The returned string is in the JSON format. This function
automatically converts this string into a Lua table. This table structure simplifies the
display of the address data. There is no comparable Formworks function to work with
XML data, so it is recommended that a post code service that provides JSON formatted
data, such as Post Code Anywhere is used.

The steps involved in retrieving and displaying post code data are:

1. Format a string that includes your account key, the post code to be queried and
your account key, and user name, to use as a URL which is passed to the post
code lookup service provided.

2. Use the http.getTableFromJSON() function to pass the URL to the web service,
and store the string of address data returned by the lookup service, to a Lua
table.

3. Display the returned partial address data in a drop down list box.
4. The device user selects the partial address from the drop down list, which

provides your script with a unique address ID code.
5. You can use this unique ID to format a second URL, which when passed to the

web service, will provide detailed address data.

In script, format a string with the URL for the web service that includes the post code
to be queried, your account key and user name. Remove any spaces from the post code
before inserting in the URL. This should look similar to the following example:

http://services.postcodeanywhere.co.uk/PostcodeAnywhere/Interactive/Find/v1.10/json3.
ws?Key=AA33-AA33-AA33-
AA33&SearchTerm=DA122NG&PreferredLanguage=English&Filter=None&UserName=username";

In this example, AA33-AA33-AA33-AA33 is the account key, DA122NG is the post code to
be queried, and username is the user name.

Call the post code lookup web service, using the http.getTableFromJSON() function,
passing the URL that you have constructed. Save the string of partial address data
returned by the function, to a Lua table. This is handled for you automatically by the
function.

Ensure that the drop down list box used to display the address is clear then populate
the list box with the table, by iterating over the tables contents.

Version 1.0 Page 65

The script to achieve this is included in the example below, which has been placed in
the OnTap event of a button.

It may be that the partial address data supplied above is sufficient for your
requirements. If so, you should substitute the line:

ClientAddress.add(v["StreetAddress"],v["PostCode"]);

For the appropriate line in the above example. The list boxes value property will then
contain the address details instead of a unique property ID.

If not, then you will need to make a second call to the post code lookup service to
obtain detailed address data. You do this by acquiring the unique ID from the list box’s
value property, when the device user selects the address from the drop down list. Place
the id in a string, using the following format:

http://services.postcodeanywhere.co.uk/PostcodeAnywhere/Interactive/RetrieveById/v1.3
0/json3.ws?Key=AA33-AA33-AA33-
AA33&Id=23747212.00&PreferredLanguage=English&UserName=username

Again, the string returned by the http.getTableFromJSON() function is stored in a Lua
table. You can check if the fields in the table are empty by using the string.len()
function. In the example below, an address field has been populated, by checking if
table fields are empty, and if not, their contents are concatenated (..).

http://services.postcodeanywhere.co.uk/PostcodeAnywhere/Interactive/RetrieveById/v1.30/json3.ws?Key=AA33-AA33-AA33-AA33&Id=23747212.00&PreferredLanguage=English&UserName=username
http://services.postcodeanywhere.co.uk/PostcodeAnywhere/Interactive/RetrieveById/v1.30/json3.ws?Key=AA33-AA33-AA33-AA33&Id=23747212.00&PreferredLanguage=English&UserName=username
http://services.postcodeanywhere.co.uk/PostcodeAnywhere/Interactive/RetrieveById/v1.30/json3.ws?Key=AA33-AA33-AA33-AA33&Id=23747212.00&PreferredLanguage=English&UserName=username

Version 1.0 Page 66

Address fields available
Appendix V contains a listing of all the available address fields returned by the Post
Code Anywhere post code lookup service. The following are the main ones that you
are likely to require are; Company, Line1, Line2, Line3, Line4, Line5, PostTown, County,
Postcode.

The easiest way to tell what address fields you may be interested in, is to use the
http.getStringFromUrl(url) function with your URL and save the string returned to a
paragraph element’s value property, so you can inspect it.

Other Network Functions
Formworks XD brings along a new network function to retrieve information using the
GET method.

The fetch function requires three parameters, a url, data (ie the method) and a
function. The format is: fetch(url, data,
"functionName");

The example to the right demonstrates
how to use the fetch function and a
created function ‘callback’ to pull news
articles from a news API using a country
code value to populate a drop down
field.

The headers array is created on line 3
and will hold the Content-Type and API
key for the News API. The country code
used to complete the url is derived from
a user input text field on line 8.

The callback function will return any
article results from the url and populate the articleList dropdown.

The data array consists of the GET method and the header array.

The fetch function can also be used to populate a photo field from a url. This requires
an additional parameter after the function parameter to name the photo field. The
below example demonstrates this.

Version 1.0 Page 67

Version 1.0 Page 68

Debugging

Introduction
Debug support within Formworks is currently in Beta. It is intended as a step towards
helping with script debugging, rather than a robust, fully-featured debugging
environment.

Calling the debug()
method in a script will
show a debug
window, giving the
user the ability to step
through the script and
see any local variable
values. The debug
window will close
when the script has
finished running.

If the script is not
already debugging,
and the form is in test
(i.e., not published),
the script is broken
down line-by-line,
with each line being run individually, one line at a time on a separate thread.

When a form has been either published or saved, all calls to debug() are removed.

Note: Current limitations to the debugging process are:

● Unable to step into Lua functions called within functions
● Scripts with more than 99,999 lines of code may not debug correctly
● Adding debug() to an OnValidate() event handler will prevent the Submission

window from showing , so the form cannot be submitted.
● The Debug window does not appear on forms that have been previously saved.

Version 1.0 Page 69

Properties - General

valid Type: Boolean
Where a “valid” property is present, setting its value to false will prevent the form from
submitting. The valid property, like the message property, can only be set in the
OnValidate event of an element. Setting it in any other event will not cause an error,
but it will be ignored by the application.

The format for setting a valid property to false is: element.valid = false;

message Type: String
The message property of an element is used to display messages in the Submit
window, when the device user selects Submit Form. The most common usage of the
Message property is to deliver a meaningful message to the device user when
incorrect data has been entered on a form, or when a required field has not been
completed. The Message property works in combination with the Valid property. If
the Valid property of the element has been set to false, the message will be an error
type, and display an amber triangle. If the Valid property is true, the message type
will be a warning and display a red icon. The Message property, like the Valid
property, can only be set in the OnValidate event of an element.

The format to set the Message property for an element is: element.message = “Hello
World”;

enabled Type: Boolean
The Enabled property allows you to
enable/disable an element. This can be
based for example on the value from
another element. In this example, if the
value of the text box element,
CompanyName1 is changed to “Office”,
the text box element (alias) companyAddress will be disabled.

You can enable or disable an entire page, by setting its Enabled property to true/false.
Setting a page’s Enabled property to false will disable all the elements on the page.
The page will still be accessible from the pages drop down navigation control, and the
‘next page’ and ‘previous page’ buttons.

The format to set the Enabled property of an element is: element.enabled = true/false;

visible Type: Boolean
The Visible property allows you to set the visibility of an element to true/false and
effectively make the element disappear from the form. This could be based on another
value, as with the Enabled property. You could check the value of a text box, and if it
were not appropriate to accept input into another text box, you could make it
disappear. Most users find the appearance and disappearance of fields on a screen
unsettling, and it is normally better practise to disable fields, rather than making them
disappear.

Version 1.0 Page 70

The format for using the Visible property is: element.visible = true/false;

title Type: String
The title property of an element is the text name that displays against the element, not
its value. On a button element, this would be the text on the button. For a check box,
it would be the text description that displays by the check box and for a text box, the
text that displays above the text box.

You can read the value of the title property, or write to it. So, both the following
statements are valid uses for the title property: element.title = “Company Name”; or
stringVariable = element.title;

Note: The title properties of the container elements Page, Section and Group, are read
only. They cannot be changed within script. Page titles can be changed within script
in the Formworks XD App Only.

isIphone() Type: Boolean
The isIphone property can be used to check the device type being used and is read
only. This will return true if the device being used is an iPhone and false if the device is
an iPad.

local device = isIphone();

if device == true then

 Device.value = "iPhone";

else

 Device.value = "iPad";

end

Note:Formworks XD App only.

Version 1.0 Page 71

Events - General

OnBlur
This is the ‘Lost Focus’ event. When the device user exits one element by selecting
another, the OnBlur event of the first element is fired. You could use this event to check
the value of an element and then enable or disable other elements based on the value.

OnEnable
An element’s enabled property can be used to enable or disable the element. When an
element is enabled, the OnEnable event will fire.

OnDisable
An element’s enabled property can be used to enable and disable the element. When
an element is disabled, the OnDisable event will fire.

OnFocus
The OnFocus event is triggered when the device user accesses an element, for example
by selecting a text box element or drop down list box.

OnHide
An element’s Visible property can be used to make the element visible or invisible.
When the element’s Visible property is set to false, the element’s OnHide event is fired.

OnShow
An element’s visible property can be used to make the element visible or invisible.
When the element’s visible property is set to true, the element’s OnShow event is fired.

OnTap – button element specific
This event is fired when you touch a button element. You can create button elements
and place script in their OnTap events to perform actions when they are selected.

OnValidate
The OnValidate event is where you place script that is run when the device user selects
to submit a form. You can perform checks on the values of elements on the form, in
particular, the element in whose OnValidate event you are entering the script.

The normal process is to check the value of various elements, then set the element’s
“valid” property to false if you wish to prevent the form from being submitted. You
should also enter a meaningful message against the element’s Message property, to be
displayed in the Form Submit window when they select to submit the form. In this way
the device user knows why they cannot submit the form. The message and valid
properties can only be set in the OnValidate event. If you set an element’s message
property and leave it’s valid property as true, a message can be displayed on the Form
Submit window, for example as a warning.

Version 1.0 Page 72

If you need to enter the same script against a number of fields within a container, such
as a page, section or group, you could place the code within the container’s OnValidate
event and call it using the container’s OnValidate() method. In this way, instead of
entering the same script in a number of locations, it could be centralised. Then if
changes need to be made, they would only need to be made once.

Even though Forms, Pages, Sections and Groups have an OnValidate method and event
handler, calling OnValidate on a page for example, does not trigger the OnValidate()
methods of the fields inside that page. It is only when the form is submitted that each
element on the form has its OnValidate() method called.

OnValueChange
This event is similar to the OnBlur event, in that if you change the value in a date
element, it would fire as you leave the date field. The event will also fire when a field
element has been changed, for example in a text field this will fire after every key press.
Note: In the Formworks XD App this event will fire after 200mseconds of the last
keypress.

Version 1.0 Page 73

Form Specific Events – in order of occurrence

OnStart
This event is fired before the OnOpen event and only once in the life cycle of a form.

OnOpen
This event fires every time a form is opened and is useful for setting up variables, calling
a database etc.

OnSave
This event was designed to prevent the loss of data, for example should the device’s
battery expire unexpectedly. The event fires automatically at various points during
completion of a form - when values change, particularly sketches, signatures and photo
fields, but also when other field values like text boxes change. The OnValidate event is
NOT fired for this option, and the form will not be validated until Submit Form is
selected. This event has virtually no use as far as user developed scripting is concerned
and does NOT relate to the Save And Close option. Because the event fires so often
during device user input, placing code here will greatly reduce the response times
moving between fields.

OnClose
This event is fired when a device user selects the “Save And Close” option. This is the
event to place script that is read directly before a form is saved onto the device to be
completed and submitted at a later time.

OnSubmitAndConfirm
This event fires after the device user select the Submit option from the Submit Form
window. This event could be used in conjunction with the Global methods
getUserData() and setUserData() to pass information between forms.

Globals
Available for use in the Formworks XD App Only. This event runs initially before the
OnStart or OnOpen events. This event was added to be used as a space to put all
global functions and variables. Script to populate dropdown fields from databases can
also be placed in this event. Functions placed within this event that also need to be
run within the original Formworks app will need to be placed in the forms OnOpen
event as well.

Version 1.0 Page 74

Form Specific Methods and Properties

Audio Functions
form.startRecording()
Toggles recording. First time this instruction is issued, recording will start, second
time it pauses recording, third time it starts recording again. Format:
form.startRecording();

form.pauseRecording()
Pauses an ongoing recording. In the Formworks XD App this will toggle the recording
once a recording has already been started. Recording will pause, second time it will
continue the recording, third time will pause again. Format: form.pauseRecording();

form.stopRecording()
Stops a recording and an alert to save and or rename the audio file will appear. The
filename can be set within scripting, however this is mandatory. Format:
form.stopRecording(); or form.stopRecording("recording1");

form.recordingStatus()
Returns the status of any active or inactive recordings. Recording Status has three
possible values:
Active Recording is currently in progress
Paused Recording has been paused
Inactive Recording has been stopped. There is no current recording.
Format: Status.value = form.recordingStatus();

Miscellaneous Functions

form.changePage("aliasName / pagename")
This form level method moves the focus to the page specified within the quotes. Either
the page name or an alias can be provided, but this must be enclosed in straight quotes,
as in the example. To set the focus on a specific field on a different page, first issue the
form.changePage() instruction, followed by the element.focus() method. It is not
possible to move directly to a field on a different page without first issuing the
form.changePage() instruction.

form.openURL(strVar)
This method opens the input device's default web browser, normally Safari, with an
iPad, and opens the URL specified in the method’s string parameter. For example,
form.openURL(“https://www.bbc.co.uk/news”) would open the BBC news website. You can
move back to the Formworks input screen by selecting Formworks, from the top right
hand side of the screen.

Version 1.0 Page 75

form.templateId
This property is read only and returns the unique template id for the form in use. An
example would be: stringVar = form.templateId; stringVar would contain the GUID
value of the template.
As always, these instructions are case sensitive.

Appendix I

Elements - their properties, events and methods

Buttons

Properties
enabled Boolean. Format: element.enabled = true/false;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
visible Boolean. Format: element.visible = true/false;
color String. Example element.color = “red”; Note: Formworks XD App
Only.

Events
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnTap Fired when a button element is touched

Methods
OnTap Used to active the script behind the button

Checkboxes

Properties
title String. Format: element.title = “New Title”;
value String. The value contained within the field.
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
valid Boolean. Format: element.valid = true/false;
visible Boolean. Format: element.visible = true/false;

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false

Version 1.0 Page 76

OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when a user submits a form
OnValueChange Fired when the value for an element changes

Methods
focus Sets focus to a specified field. Format: element.focus();
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();

Version 1.0 Page 77

Date elements

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field.
visible Boolean. Format: element.visible = true/false;
color Not supported.
days Number. Format: element.days = 17110.
minimumDate String input. Format: “today” or “14/12/2018”. See date
functions.
minimumDateDays String input. Format “17110”.
maximumDate String input. Example “today-5480”. See date functions.
maximumDateDays Number input. Format “43953”.
seconds (read only)
weekday (read only)

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when user submits a form
OnValueChange Fired when the value for an element changes

Methods
focus Sets focus to a specified field. Format: element.focus();
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();

Functions
dateElement1.equalTo(dateElement2.value)
FirstDate.lessThan(SecondDate.value);
dateElement1.greaterThan(dateElement2.value)
dateElement.age()

Version 1.0 Page 78

Forms

Properties
templateId Usage: form.templateId. This property is read only and returns

the unique template id for the form in use. An example would be:
stringVar = form.templateId; stringVar would contain the GUID
value of the template.

Events – in order of occurrence.
For details see “Form Specific Events” above.
OnStart OnOpen OnClose
OnValidate OnSave

OnSubmitAndConfirm Globals

Methods - General

changePage Changes the page within the form. Format:
form.changePage("Page2");

save Saves the form. Format: form.save();
close Closes the form. Saves first by default, unless the save parameter

is set to false. Format: form.close(); or close(true/false) to
control saving of the form;

submit Validates the form and shows the Submission window. Format:
form.submit();

submitWithoutConfirm Submits a form, but if there are no validation errors, the
validation screen does not display. Format:
form.submitWithoutConfirm();

openFormWithName Can be used to automatically open another form when
current one closes.

delete Deletes the form from the device, if permitted by form template
settings. Format: form.delete();

OnValidate Triggers the form.OnValidate event.

Methods - Audio
startRecording Toggles between recording and pausing. First time starts

recording, second time pauses and third time resumes recording.
Format: form.startRecording();
pauseRecording Pauses an active recording. Note:
Formworks XD App will toggles between recording and pausing.
First time pauses recording, second time starts and third time
pauses again. Format: form.pauseRecording();
stopRecording Stop an active recording. Can also set the
filename within parentheses. Format: form.stopRecording();
recordingStatus Returns the state of an active or inactive
recording. Format: form.recordingStatus();

Related functions
getCurrentUserName()

Version 1.0 Page 79

getCurrentUserEmail()
getCurrentLocation()
setUserData(“Key”,value)
getUserData(“Key”)
isIphone()

Version 1.0 Page 80

Groups and Sections

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: stringVariable = element.title;

Note: The title property of these container elements are read
only.
valid Boolean. Format: element.valid = true/false;
visible Boolean. Format: element.visible = true/false;

Events
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when user submits a form

Methods
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();
color("colour1","colour2");

Sets the foreground / background colour on sections. Groups
and tables are not currently supported. Example:
section.color("red","green");

enabled Enables or disables every element with a section or group.
Format: element.enabled = true/false;

visible Sets the visibility of a section or group. Format: element.visible =
true/false;

Version 1.0 Page 81

Images

Properties
visible Boolean. Format: element.visible = true/false;

Events
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true

Methods
set Format: element.set(“url”);

Labels

Properties
title String. Format: element.title = “New Title”;
visible Boolean. Format: element.visible = true/false;
color String. Example element.color = “red”; Note: Formworks XD App
Only.

Events
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true

Line

Properties
visible Boolean. Format: element.visible = true/false;

Events
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true

Version 1.0 Page 82

Multi-Select

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field.
visible Boolean. Format: element.visible = true/false;

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when a user submits a form
OnValueChange Fired when the value for an element changes

Methods
Focus Sets focus to a specified field. Format: element.focus();
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();
count() Returns the number of items available. Format
element.count();
countSelected() Return the number of items selected. Format

element.countSelected();
getOption() Returns true or false, depending on whether the option specified

within the brackets has been selected. Format:
element.getOption("Option 1").value would return true if
“Option 1” had been selected

setOption("Option 1", false)
Use this method to set the values to true or false within a
multiselect element. E.g.,
Page1.Section1.ElementName.setOption("Option 1", false)

Version 1.0 Page 83

Pages

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: stringVariable = element.title;

Note: The title property of the page container element is read
only except in the Formworks XD App.

valid Boolean. Format: page.valid = true/false;
visible Boolean. Format: pageName.visible = true/false;

● Hidden pages do not show on apps Page List.
● Hidden pages are skipped over when using apps Page List.
● You cannot set the visibility for all pages to hidden in

script. But this is possible in the Template designer.
● If the current page is set to hidden, the next visible page is

displayed.
● If the last visible page is set to hidden, the previous visible

page is displayed.
● It is not possible to hide a page from the onBeforeOpen()

and onBeforeStart() events. The form is not in scope at
these points.

Events
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnValidate OnValidate events are fired in turn when users selects to submit
form

Methods
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();

Version 1.0 Page 84

Photos, Signatures and Sketches

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field.
visible Boolean. Format: element.visible = true/false;

Events
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when a user submits a form
OnValueChange Fired when the value for an element changes

Methods
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();
clear() The clear method removes the contents of element. i.e.,
Photo1.clear();

Note: Sketch fields can only be cleared within script in the
Formworks XD App.

Version 1.0 Page 85

Single Selects

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field. This can also be used

to clear the selected value, i.e., listBox.value = “”;, or set the
value, i.e. listBox.value = “Yes”;

visible Boolean. Format: element.visible = true/false;

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when a user submits a form
OnValueChange Fired when the value for an element changes

Methods
add Adds a new option to the end of the list. Dropdowns only.

You must use the element’s fully qualified name, NOT the
alias.

clear Clear all options. Dropdowns only. Use listBox.value = “”
to clear selection.

focus
remove Remove the option with the given value.
Dropdowns only.
OnValidate Triggers the OnValidate event.

setDatabaseConfiguration() Formworks XD App
only. Populates a Dropdown single selection field from a
database. Format:
County.setDatabaseConfiguration("databaseName",
"FilterByColoumnHeader", "[keyValue/columnHeader]",
"displayValue/coloumnHeader");

Version 1.0 Page 86

Table Element

Filter Table Function
tableName/alias.filterTable(Column, “title/value”, Operator, Value, hidden Rows)

Parameter Description

Column Number representing the column to be used in the filter operation.
Columns are based on 1 as the first column.

Title/Value String representing the basis of the filter. Its value can be either “title”
or “value”. If you select “title”, the value within the element is ignored
and only the title property of the element is evaluated. If you select
“value”, the value content property of the element is evaluated.

Operator String representing the operator used to filter the table “==“ “>” “<”
“>=” “<=” “contains” “doesNotContain”

Value String/decimal.

Hidden Rows String choosing whether hidden rows are included in the filter.

General Table Functions
Table.enabled = true/false; Sets / reads enabled

status.

Table.hideColumn(string/int) and Table.showColumn(string/int) Hide /
Reveal columns.

Table.hideRow(string/int) and Table.showRow(string/int) Hide / Reveal
rows.

Table.enableColumn(string/int) and Table.disableColumn(string/int)Enable / Disable
columns.

Table.enableRow(string/int) and Table.disableRow(string/int) Enable /
Disable rows.

Table.hideColumnHeaders() and Table.showColumnHeaders(); Hides / Reveals
Headers

Table.hideBorders() and Table.showBorders() Hides / Reveals
grid lines.

Rows = Table.rowCount() Returns the table row
count

Table.column_3.visible = true/false; Sets column visibility.

Version 1.0 Page 87

Text Boxes and Paragraph elements

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field.
visible Boolean. Format: element.visible = true/false;
color String. Example element.color = “red”;

Note: The color property can only be updated for Paragraph
fields within script in the Formworks XD App

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when user submits a form
OnValueChange Fired when the value for an element changes, with a delay of

200mseconds in the Formworks XD App.

Methods
focus Sets focus to a specified field. Format: element.focus();
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();

Version 1.0 Page 88

Time elements

Properties
enabled Boolean. Format: element.enabled = true/false;
message String. Format: element.message = “New Message”;
title String. Format: element.title = “New Title”;
valid Boolean. Format: element.valid = true/false;
value String. The value contained within the field.
visible Boolean. Format: element.visible = true/false;
color Not supported.
seconds Number. Format: nvar = element.seconds;

Events
OnBlur Fired when the element loses focus
OnDisable Fired when the enabled property is set to false
OnEnable Fired when the enabled property is set to true
OnFocus Fired when the element gains focus
OnHide Fired when the visible property is set to false
OnShow Fired when the visible property is set to true
OnValidate OnValidate events are fired in turn when user submits a form
OnValueChange Fired when the value for an element changes

Methods
focus Sets focus to a specified field. Format: element.focus();
OnValidate Fires an element’s OnValidate event. Format:
element.OnValidate();
subtractTime() Subtracting time elements:

Difference.value = Time2.subtractTime(Time1.minutes);
Normally the first time element, Time1, will be lower than the
second, Time2. For example, start and end times for work on site
might be 09:30 until 11:30. In which case the function will return
120.

seconds() Can be used to compare or add times together.

Total.value = (tonumber(Time2.seconds) - tonumber(Time1.seconds))/60;

Version 1.0 Page 89

Appendix IV

Character classes

. all characters
%a letters
%c control characters
%d digits
%l lower case letters
%p punctuation characters
%s space characters
%u upper case letters
%
w alphanumeric characters

%x hexadecimal digits
%z the character with representation 0

Version 1.0 Page 90

Appendix V

Post Code Anywhere Address Fields
Company
Line1
Line2
Line3
Line4
Line5
PostTown
County
Postcode
Mailsort
Barcode
Type
DeliveryPointSuffix
SubBuilding
BuildingName
BuildingNumber
PrimaryStreet
SecondaryStreet
DoubleDependentLocality
DependentLocality
PoBox
PrimaryStreetName
PrimaryStreetType
SecondaryStreetName
SecondaryStreetType
CountryName
CountryISO2
CountryISO3

	Introduction to Formworks Scripting
	Formworks scripting introduction
	Common uses of scripting
	Validation
	Calculated fields
	Date Arithmetic

	Lua
	Limitations of Lua on iOS Devices
	Testing and debugging your Lua scripts

	The Formworks Scripting Object Model
	Similarities to other development environments
	Elements, Events, Properties and Methods
	Lua Guidelines – The Basics
	Case sensitivity
	Comment Operator (--)
	Concatenation Operator (..)
	Equals (=) and (==)
	Terminating instructions (;)
	Assigning and Reading values to Elements
	User Defined Properties
	Code structures

	“and” and “or” comparison
	Less than and Greater than comparisons
	Negation (~=)

	Lua – Advanced use
	String Functions
	Converting between Strings and Numbers
	Validating a range or individual characters in a Field
	Replacing characters in a field

	Character substitution within element names
	Looping structures in Lua
	Handling Dates

	Lua – Global Functions
	Introduction
	Returning a value

	Formworks Date Validation Properties and Functions
	Date Properties
	Date Functions
	Time Properties
	Time Functions
	Setting Date Properties
	Reading Date Properties
	Using Date Functions
	Common date formats
	Formworks Time Validation Properties

	Device User’s Name, Email Address and Geo-Location
	Device User’s Name
	Device User’s Email Address
	Geo-Location Data
	Creating a Unique Reference
	Renaming PDF Export Files

	Formworks Alert Boxes, Notification Lists
	Interactive alert Boxes
	Notification Lists

	Scripting Specific Elements
	Help Element
	Single Selection (List Box)
	Table Element
	Filter Table Function
	General Table Functions
	Accessing Table Cells within Loops
	Setting Row Visibility within Loops
	Methods of Accessing Individual Table Cells

	Forms
	Automatically opening a new blank form
	Automatically closing and deleting a form

	Dynamically populating a Single Selection Dropdown List box
	Dynamically populating a Single Selection List based on values in another
	Elements
	Containers
	Fields
	Other Elements

	Events
	Properties
	Methods
	The Script Template window
	Introduction
	OnValidate Event - Checking for valid input
	Using the “and” keyword and Alias names – validating multiple values
	Checking for empty elements/fields

	Device Submit Window
	OnValueChange event
	Intellisense

	Calculated Fields
	Introduction

	Global Variables
	Introduction

	Custom Properties
	Introduction
	Features of Custom properties
	Comparison chart

	Date and Time Functions
	Calculating the days between two dates
	Calculating the difference in minutes between two times
	Operating System Time Function

	Table Elements Scripting
	Referencing Table cells in script
	Looping through Table cells

	Databases
	Introduction
	Quotations and calculation
	Workflow and Project management

	Maintaining your databases
	Creating and Updating databases
	Making a CSV data file
	Uploading the CSV data file

	Using databases on your form templates
	Populating a basic list box
	Populating a list box with different display and return values
	The SQLite Select Statement
	Querying using Wild Cards
	Querying Multiple Columns
	Combining And, Or and Where statements

	Joining Databases
	Types of Joins
	Operators

	Populating a List box from a Database
	Populating cascading list boxes
	Local Databases on the device

	Post Code Lookup
	Introduction
	http.checkConnected(), http.getStringFromUrl(url) and http.getTableFromJSON(url)

	Address fields available
	Other Network Functions

	Debugging
	Introduction

	Properties - General
	valid Type: Boolean
	message Type: String
	enabled Type: Boolean
	visible Type: Boolean
	title Type: String
	isIphone() Type: Boolean

	Events - General
	OnBlur
	OnEnable
	OnDisable
	OnFocus
	OnHide
	OnShow
	OnTap – button element specific
	OnValidate
	OnValueChange

	Form Specific Events – in order of occurrence
	OnStart
	OnOpen
	OnSave
	OnClose
	OnSubmitAndConfirm
	Globals

	Form Specific Methods and Properties
	Audio Functions
	Miscellaneous Functions
	form.changePage("aliasName / pagename")
	form.openURL(strVar)
	form.templateId

	Appendix I
	Elements - their properties, events and methods
	Buttons
	Properties
	Events
	Methods

	Checkboxes
	Properties
	Events
	Methods

	Date elements
	Properties
	Events
	Methods
	Functions

	Forms
	Properties
	Events – in order of occurrence.
	Methods - General
	Methods - Audio
	Related functions

	Groups and Sections
	Properties
	Events
	Methods

	Images
	Properties
	Events
	Methods

	Labels
	Properties
	Events

	Line
	Properties
	Events

	Multi-Select
	Properties
	Events
	Methods

	Pages
	Properties
	Events
	Methods

	Photos, Signatures and Sketches
	Properties
	Events
	Methods

	Single Selects
	Properties
	Events
	Methods
	Filter Table Function
	General Table Functions

	Text Boxes and Paragraph elements
	Properties
	Events
	Methods

	Time elements
	Properties
	Events
	Methods

	Appendix IV
	Character classes

	Appendix V
	Post Code Anywhere Address Fields

